Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 11: e15850, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37750078

RESUMO

Visual line transect (VLT) surveys are central to the monitoring and study of marine mammals. However, for cryptic species such as deep diving cetaceans VLT surveys alone suffer from problems of low sample sizes and availability bias where animals below the surface are not available to be detected. The advent of passive acoustic monitoring (PAM) technology offers important opportunities to observe deep diving cetaceans but statistical challenges remain particularly when trying to integrate VLT and PAM data. Herein, we present a general framework to combine these data streams to estimate abundance when both surveys are conducted simultaneously. Secondarily, our approach can also be used to derive an estimate of availability bias. We outline three methods that vary in complexity and data requirements which are (1) a simple distance sampling (DS) method that treats the two datasets independently (DS-DS Method), (2) a fully integrated approach that applies a capture-mark recapture (CMR) analysis to the PAM data (CMR-DS Method) and (3) a hybrid approach that requires only a subset of the PAM CMR data (Hybrid Method). To evaluate their performance, we use simulations based on known diving and vocalizing behavior of sperm whales (Physeter macrocephalus). As a case study, we applied the Hybrid Method to data from a shipboard survey of sperm whales and compared estimates to a VLT only analysis. Simulation results demonstrated that the CMR-DS Method and Hybrid Method reduced bias by >90% for both abundance and availability bias in comparison to the simpler DS -DS Method. Overall, the CMR-DS Method was the least biased and most precise. For the case study, our application of the Hybrid Method to the sperm whale dataset produced estimates of abundance and availability bias that were comparable to estimates from the VLT only analysis but with considerably higher precision. Integrating multiple sources of data is an important goal with clear benefits. As a step towards that goal we have developed a novel framework. Results from this study are promising although challenges still remain. Future work may focus on applying this method to other deep-diving species and comparing the proposed method to other statistical approaches that aim to combine information from multiple data sources.


Assuntos
Caniformia , Cachalote , Animais , Cetáceos , Acústica , Viés
2.
Sci Rep ; 12(1): 16821, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207450

RESUMO

Sperm whales are an ideal species to study using passive acoustic technology because they spend the majority of their time underwater and produce echolocation clicks almost continuously while foraging. Passive acoustic line transect data collected between June and August 2016 were used to estimate a depth-corrected acoustic abundance and study the dive behaviour of foraging sperm whales in the western North Atlantic Ocean. 2D localizations (n = 699) were truncated at a slant range of 6500 m and combined with the multipath arrivals of surface reflected echoes to calculate 3D localizations (n = 274). Distance sampling using depth-corrected perpendicular distances resulted in a 10.5% change in the acoustic abundance estimate (2199 whales, CV = 14.6%) compared to uncorrected slant ranges (1969 whales, CV = 14.1%), and a detection function that was a better fit for the data. Sperm whales exhibited multiple foraging strategies, with bottom phases occurring at depths of 400-800, 800-1200, or > 1200 m, accounting for an average 39.2, 49.5, or 44.9% of the total recorded dive time, respectively. These results suggest that estimating 3D localizations using acoustic line transect data improves acoustic abundance estimation and can be used to answer population level questions about foraging ecology.


Assuntos
Ecolocação , Cachalote , Acústica , Animais , Humanos , Vocalização Animal , Baleias
3.
J Acoust Soc Am ; 144(5): 2691, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30522279

RESUMO

True's beaked whales (Mesoplodon mirus) were encountered on two separate shipboard surveys on 24 July 2016 and 16 September 2017 in the western North Atlantic Ocean. Recordings were made using a hydrophone array towed 300 m behind the ship. In 2016, three different groups were sighted within 1500 m of the ship; clicks were recorded for 26 min. In 2017, a single group of five whales was tracked over the course of five hours in which the ship maintained a distance <4000 m from the group. A total of 2938 frequency-modulated (FM) clicks and 7 buzzes were recorded from both encounters. Plausible inter-click-intervals (ICIs) were calculated from 2763 clicks, and frequency and duration measurements were calculated from 2150 good quality FM clicks. The median peak frequencies were 43.1 kHz (2016, n = 718) and 43.5 kHz (2017, n = 1432). Median ICIs were 0.17 s (2016) and 0.19 s (2017). The spectra and measurements of the recorded clicks closely resemble Gervais's beaked whale clicks (Mesoplodon europaeus) and distinguishing between the two species in acoustic data sets proves difficult. The acoustic behavior of True's beaked whales was previously unknown; this study provides a description of echolocation clicks produced by this species.


Assuntos
Acústica/instrumentação , Ecolocação/fisiologia , Baleias/fisiologia , Animais , Oceano Atlântico , Comportamento Animal/fisiologia , Espectrografia do Som/métodos , Especificidade da Espécie , Vocalização Animal/fisiologia , Baleias/classificação , Baleias/psicologia
4.
J Acoust Soc Am ; 142(2): 1078, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28863608

RESUMO

Beaked whales are deep divers, emitting echolocation clicks while at depth. Little is known about the dive behavior of most species; however, passive acoustic data collected with towed hydrophone arrays can provide depth information using multipath reflections of clicks coupled with a two-dimensional localization of the individual. Data were collected during a shipboard survey in the western North Atlantic Ocean using a towed linear hydrophone array. Beaked whale tracks were classified as either Cuvier's (Ziphius cavirostris) or Gervais'/True's (Mesoplodon europaeus/Mesoplodon mirus). Weighted species average depths and weighted species standard deviations were 1158 m ± 287 m for Cuvier's (n = 24), and 870 m ± 151 m for Gervais'/True's (n = 15). Depth uncertainties ranged from 3% to 142% of the average depth. Slant ranges were corrected for depth to provide average horizontal perpendicular distance estimates. The average horizontal perpendicular distance distribution exhibited fewer detections in the first bin than the second. This is the first report of dive depths for Gervais'/True's beaked whales and use of this method to obtain depths for beaked whales using a towed linear array.


Assuntos
Acústica/instrumentação , Mergulho , Ecolocação , Monitoramento Ambiental/instrumentação , Transdutores , Vocalização Animal , Baleias/psicologia , Animais , Oceano Atlântico , Desenho de Equipamento , Processamento de Sinais Assistido por Computador , Espectrografia do Som , Especificidade da Espécie , Vocalização Animal/classificação , Baleias/classificação
5.
R Soc Open Sci ; 4(12): 170940, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29308236

RESUMO

The use of commercial echosounders for scientific and industrial purposes is steadily increasing. In addition to traditional navigational and fisheries uses, commercial sonars are used extensively for oceanographic research, benthic habitat mapping, geophysical exploration, and ecosystem studies. Little is known about the effects of these acoustic sources on marine animals, though several studies have already demonstrated behavioural responses of cetaceans to shipboard echosounders. Some species of cetaceans are known to be particularly sensitive to acoustic disturbance, including beaked whales. In 2011 and 2013, we conducted cetacean assessment surveys in the western North Atlantic in which a suite of Simrad EK60 echosounders was used to characterize the distribution of prey along survey tracklines. Echosounders were alternated daily between active and passive mode, to determine whether their use affected visual and acoustic detection rates of beaked whales. A total of 256 groups of beaked whales were sighted, and 118 definitive acoustic detections were recorded. Regression analyses using generalized linear models (GLM) found that sea state and region were primary factors in determining visual sighting rates, while echosounder state was the primary driver for acoustic detections, with significantly fewer detections (only 3%) occurring when echosounders were active. These results indicate that beaked whales both detect and change their behaviour in response to commercial echosounders. The mechanism of this response is unknown, but could indicate interruption of foraging activity or vessel avoidance, with potential implications for management and mitigation of anthropogenic impacts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...